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The extension of group-level connectivity methods to individual subjects remains a hurdle for statistical
analyses of neuroimaging data. Previous group analyses of positron emission tomography data in clinically
depressed patients, for example, have shown that resting-state connectivity prior to therapy predicts how
patients eventually respond to pharmacological and cognitive–behavioral therapy. Such applications would
be considerably more informative for clinical decision making if these connectivity methods could be
extended into the individual subject domain. To test such an extension, 46 treatment-naïve depressed
patients were enrolled in an fMRI study to model baseline resting-state functional connectivity. Resting-state
fMRI scans were acquired and submitted to exploratory structural equation modeling (SEM) to derive the
optimal group connectivity model. Jackknife and split sample tests confirm that group model was highly
reproducible, and path weights were consistent across the best five group models. When this model was
applied to data from individual subjects, 85% of patients fit the group model. Histogram analysis of individual
subjects' paths indicate that some paths are better representative of group membership. These results
suggest that exploratory SEM is a viable technique for neuroimaging connectivity analyses of individual
subjects' resting-state fMRI data.

© 2008 Elsevier Inc. All rights reserved.

Introduction

Structural equation modeling (SEM) is an increasingly popular
technique for assessing the effective connectivity of neurocognitive
systems. SEM has been used to model diverse cognitive networks,
including those mediating visual perception (Bϋchel et al., 1999;
McIntosh et al., 1994), motor control (Rowe et al., 2005; Solodkin et al.,
2004; Toni et al., 2002), language function (Cabeza et al., 1997; Fu
et al., 2006; Holland et al., 2008), associative learning (Fletcher et al.,
1999; McIntosh and Gonzalez-Lima, 1998), and pain processing
(Craggs et al., 2007). Unlike correlative connectivity techniques, SEM
allows the inference of both magnitude and direction of functional
influence, thus permitting the testing of sophisticated hypotheses of
neural connectivity. Yet despite the growing prevalence of SEM, two
developing areas of functional MRI (fMRI) research could further
benefit from SEM analysis: resting-state functional connectivity and
the extension of group level analyses to individual subjects.

Several methodological factors have impeded these applications,
including the complexity ofmodelingnonrecursive systems (i.e.models
with reciprocal “feedback” paths between two regions), a priori
selection of the optimal network model (to capture the influence of
mediating variables), and the uncertain contribution of individual-
specific variance (e.g. physiological noise) to the group derived model.
Simulation work suggests the application of SEM to individuals to be
viable;models generated from100observations are as equally valid and
reliable as models generated from 10,000 observations (Boucard et al.,
2007). fMRI's high temporal resolution of 20–30 data acquisitions per
minute allows the acquisition of 100–200 datapoints in a 5–7 min run.

The interpretation of resting-state neuroimaging connectivity mo-
dels is further confounded by the frequent inability to derive a clear
biological etiology for neurological and psychiatric illness. For some
illnesses, such as Parkinson's disease, the symptoms clearly originate
from the loss of striatal dopaminergic cells, whichmanifests biologically
as a reduction in glucose and DOPA uptake on positron emission
tomography (PET) (Brooks et al., 1990; Eidelberg et al., 1990; Rougemont
et al., 1984) and frontostriatal hypometabolism (Lozza et al., 2004). For
other illnesses, such as epilepsy, PET can localize the focus of
epileptogenic activity, but techniques with greater temporal resolution
(like electroencephalography (EEG) and fMRI) are needed to detect
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perturbations in connectivity (Henry et al., 1990; Symms et al., 1999;
Waites et al., 2006). And for many illnesses, such as schizophrenia,
neuroimaginghas revealednoconsistent anatomic etiologyor functional
consequence (Leonard et al.,1999; Lewine et al.,1982; Seaton et al.,1999).

Despite these limitations, progress has been made at characteri-
zing individual differences in neuroimaging datawith SEM. One of the
earliest neuroimaging applications of SEM showed a correlation
between individual's learning rates and the path weight from poste-
rior parietal to inferotemporal cortex for a network model of visuo-
spatial learning (Bϋchel et al., 1999). Mechelli et al. (2002) expanded
upon this work by building a “network of networks” – that is, by
modeling individuals as separate networks (connected by a node
representing stimulus onsets) – for a pseudoword discrimination task.
By iteratively freeing up one path across subjects while constraining
all other paths to a constant group value, Mechelli used model fits to
assess which paths significantly differed when allowed to vary across
individuals. Unfortunately, the large number of ROIs modeled by their
approach (m ROIs×n subjects+1) makes it ill suited for the explora-
tory adaptation of SEM described in this work and elsewhere (see
below; Zhuang et al., 2005).

Theoretically derived models constructed from resting-state data
(primarily PET) have provided an additional starting point for
individual-level analyses of resting state fMRI data using SEM tech-
niques. Seminowicz et al. (2004) developed a structural model for
resting-state PET data acquired from a multisite sample of depressed
patients prior to treatment. Alterations among the model's path
loadings corresponded with patients' therapeutic outcome. But the
paucity of PET data per patient constrained this analysis to group-level
interpretations. Resting state analyses with fMRI, taking advantage of
the modality's high temporal resolution, should provide the necessary
power for structural equation modeling of individual subjects.

We present several optimizations of SEM for its extension toward
both resting-state data and individual-level analyses. We started with
the most frequently cited structural equation model for resting state
data — a 7 node model of limbic–frontal connectivity in major
depressive disorder (Seminowicz et al., 2004). Seminowicz et al. chose
the nodes based on a metanalysis of regions associated with consis-
tent antidepressant treatment response. We applied this model to a
sample of depressed patients, since this model had previously only
been applied to depression.

The transition from PET to fMRI substantially increases the observa-
tion size, which in turn increases our statistical power— i.e. our ability to
reject the null hypothesis when it is false (Agresti and Finlay, 1997). The
null hypothesis for structural equation modeling is that the model fits
the data, and our fit criteria test if we can reject the null hypothesis. A
model that fits the relatively underpowered PET data may not fit fMRI
data. Thus,we subjected this basemodel to an exploratory adaptation of
SEM (Zhuang et al., 2005) to optimally tailor themodel to fit our sample
of depressed patients. Exploratory SEM calculates and ranks all possible
subsets of the base model to find the model with the optimal fit— thus
obviating the need for a priori model selection.

Additionally, the increased number of observations per subject
permits cross-validation approaches for assessing model reliability.
The best model's reliability was assessed with jackknife and split-
sample approaches to characterize the influence of subject outliers on
the model. We next performed confirmatory SEM to assess how
reliably the optimal groupmodel fit data from individual subjects. The
extension of these group-level analyses toward individual subjects
allows us to better capture sample homogeneity and heterogeneity.

Materials and methods

Subjects

Forty-six (22 male; mean±sd age=42±12 years old) never treated
patients meeting DSM IV criteria for a current major depressive

episode were recruited in accordance with Emory University Institu-
tional Review Board policy. Patients provided verbal and written
informed consent to participate in this study. To qualify for inclusion,
participants must be ages 18–65 years old, of any ethnicity or gender,
have a DSM IV diagnosis of Major Depressive Episode as determined
by the SCID IV structured interview (with MDD as the primary
diagnosis and no co-morbid disorders except anxiety disorders), have
a 17 question score Hamilton-D ≥ 18 at screening and ≥ 15 at baseline
(day of scanning), and be able to understand and provide written
consent. Table 1 provides sample demographics, and Appendix A
provides our rigorous list of exclusion criteria used to generate our
sample of never-before treated MDD patients.

Equipment, procedure and preprocessing

MRI data acquisition was performed using a 3.0 T Siemens
Magnetom Trio scanner (Siemens Medical Solutions USA; Malvern
PA, USA) with the Siemens 12-channel head matrix coil. Anatomic
images were acquired at 1×1×1 mm3 resolution with an MPRAGE
sequence using the following parameters: FOV 224×256×176 mm, TR
2600 ms, TE 3.02 ms, FA 8°.

Functional data were acquired with a z-saga sequence to minimize
ablation of orbitofrontal cortex signal due to sinus cavities (Heberlein
and Hu, 2004). The z-saga sequence used scan parameters of FOV
220×220×80 mm, 20 axial slices, TR 2020 ms, TE1/TE2 30 ms/66 ms,
FA 90° for 210 acquisitions across 7.2 min at 3.4×3.4×4.0 mm reso-
lution. Although z-saga has reduced anatomic coverage compared to
standard echo-planar sequences, its usage was necessary to capture
orbitofrontal cortex activity, an essential region in this model.

For functional scans, participants were instructed to passively view
a fixation cross while “clearing their minds of any specific thoughts”.
The fixation cross helped prevent brain activity from eye movement
and helped prevent subjects from falling asleep. Since we have no
direct measure of compliance, subjects were asked following scanning
if they performed the task as instructed. All subjects reported
performing the task. In-house automated Perl scripts operating
SPM5 (Friston et al., 1995) performed data processing. The anatomical
images were simultaneously segmented and normlized to the
ICBM462 normalized brain atlas using the SPM5 program “spm_pre-
proc.m”. Functional data were motion corrected, slice time corrected,
written to ICBM452 space using the parameters calculated from the
corresponding anatomical imaging, spatially smoothed using a 6 mm
FWHM Gaussian kernel, and bandpass filtered (0.008b fb0.09 Hz).
Anatomic gray matter masks were also transformed to MNI space
using each subject's MNI transformation matrix.

ROI selection

Regions of interest (ROIs) were generated from an in-house mask
of 14 ROIs implicated in depression from PET, fMRI, and DTI studies

Table 1
Sample demographics

Age: mean (sd) 42 (12) years
Gender 48% male
Race 76% Caucasian

17% African-American
7% multiethnicity

Episode duration: mean (sd) 60 (110) months
Episode duration: chronic
(episode lasting over 24 months)

50%

HAMD-17 at baseline: mean (sd) 22 (3.3)
HAMD at scan: mean (sd) 20 (3.8)
Recurrent vs first episode 53% recurrent MDD

47% first episode MDD
Family history 35% with family history of MDD
Concurrent axis I anxiety disorder 35% with co-morbid anxiety
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(Craddock et al., 2007). ROIs were defined by a clinically trained
neuroanatomist (HSM) as 6 mm radius spheres using the anatomy of
the ICBM452 anatomic template. When faced with ambiguity in
placing the ROIs (particularly large cortical areas such as prefrontal
cortex), ROI placement was additionally guided by a resting-state
connectivity analysis using a posterior cingulate (PCC) seed, a 6 mm
radius sphere centered on Talairach coordinates 0, 50, 25. AFNI (Cox,
1996) was used to generate PCC seed maps for each of 25 healthy
control subjects. A two-tailed one-sample t-test assessed voxelwise
if individuals' seed map correlations significantly differed from zero
(false detection rate threshold of q=0.05). This group map was used
to guide placement of the 14 ROIs (each 6 mm radius spheres), of
which the 7 ROIs from the Seminowicz study were a subset. For
bilateral ROIs, only the right hemisphere ROI was included to avoid
issues of multicollinearity. Fig. 1 depicts the ROIs overlaid atop the
ICBM452 anatomic template, and Table 2 provides the MNI coor-
dinates for the centers of the 6 mm spheres representing these 7
ROIs. These ROIs were subsequently resampled from anatomic
resolution (1×1×1 mm3) to functional resolution (3.4×3.4×4 mm3)
using AFNI's 3dfractionize program. If the resampled voxel included
two neighboring ROIs – for example, included high-resolution
voxels from amygdala and hippocampus – then it was assigned to
whichever ROI composed the largest percentage of its volume.

Analysis

An additional 15 subjects (not reported in demographics above)
were enrolled but excluded due to claustrophobia, excessive
head motion (greater than 1 mm), technical difficulties with data
reconstruction, or uncorrectable scanner artifact. Timecourses for

each individual were extracted by multiplying the resampled ROI
mask by the subject's MNI-transformed gray matter mask to capture
only gray matter voxels, then averaging voxels within each ROI to
obtain a mean gray matter timecourse per ROI. ROI timecourses
were further cleaned by using AFNI's 3dDeconvolution to regress
out the influence of the 6 motion parameters (acquired from
SPM5's spm_realign.m) and the global mean timecourse (mean
signal intensity at each timepoint). ROI timecourses were normalized
as z-scores for each participant, then concatenated across partic-
ipants within group to produce a matrix of ROI (7) columns and
subject× timepoints (46×210) rows. Subject number and image
number were also added as additional columns.

Exploratory SEM was performed using in-house programs written
inMatlab 7.4.0 (TheMathWorks, 2007). Testing all possible submodels
of the 17 path base model took approximately 19 h with a 2.5 GHz
processor running Linux Redhat Enterprise version 4.0. Note that
paths in the base model were constrained to established human and
non-human primate anatomy (Seminowicz et al., 2004); therefore, all
submodels tested by this method are likewise constrained to
established anatomy. The Matlab program determined which paths
to model from an input matrix, generated the corresponding Lisrel
8.80S “.spl" file (Jöreskog and Sörbon, 2006), executed Lisrel in a Linux
environment, and extracts the goodness of fit indices from Lisrel
output. Lisrel analyzed the data's correlation matrix (as opposed to
covariance matrix) so that the inputs to Lisrel were standardized to a
unit variance across all variables. Extracted fit criteria include 35 fit
indices, the lowest path-weight t-score, the greatest Psi variable
t-score (see below), the greatest multiple squared correlation, and
coefficients along the estimated covariance matrix diagonal not
equaling one. The script also calculated and saved a binary variable
describing model recursiveness (Maruyama, 1998).

Several optimizations have been introduced since previous
implementations of this method (Zhuang et al., 2005). First, the
code has been streamlined for user friendliness: the user inputs a
matrix of 1 s and 0 s describing viable paths in the full model, from
which the Matlab code generates its Lisrel syntax. Due to the fact that
the data are already centered (raw data are standardized scores), the
Alpha matrix is constrained to 0 by setting each variable's Alpha
matrix mean and variance to 0. Since the Alpha matrix is no longer
being estimated, this modification also frees up degrees of freedom,
thus increasing the complexity of identifiable models. Third, we
ensured that the standardized Beta matrix would be interpretable as
correlations by excluding models with squared multiple correlations
(R2) exceeding 1 (over-parameterized models).

Fig. 1. ROIs overlayed atop the ICBM452 anatomic template. Images shown in radiological convention (subject's left is viewer's right). SCC25, subanterior cingulate, red; MACC24,
midanterior cingulate, orange; DLPF9, dorsolateral prefrontal cortex, yellow; MPF10, medial prefrontal cortex, green; OFC11, orbitofrontal cortex, blue; HPC, hippocampus, indigo;
Thalamus, violet.

Table 2
ROI center coordinates for base model

Region of interest Talairach coordinates

x y z

Subgenual cingulate 1 24 −10
Midanterior cingulate 1 17 −34
Dorsolateral prefrontal cortex 34 48 27
Medial prefrontal cortex 1 62 14
Orbitofrontal cortex 1 49 −10
Hippocampus 29 −24 −12
Anterior thalamus 15 −11 17
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Ranking

Appendix B describes the exploratory SEM approach and the fit
indices described below. Ranking began with removal of nonviable
models. Previously published exclusion criteria for this method were
failure to converge after 240 iterations, a parsimonious goodness of fit
(PGFI) less than 0.10, and non-significant path weights (i.e. path
loadings whose 90% confidence intervals included 0) (Zhuang et al.,
2005). The latter criterion is justified since this approach tests all
models; this method tests both the model in question and an identical
model lacking the non-significant path(s). Three additional exclusion
criteria were used. First, models with a squared multiple correlation
(R2) score exceeding 1 were excluded, as these should be statistically
impossible. Second,models with a probability of close fit (PCLOSE) less
than or equal to 0.05 were excluded, as this is indicative of a rootmean
squared error of approximation (RMSEA) significantly differing from
zero. Third, applying covariance structure models to a correlation
matrix can alter the reconstruction of that matrix, as indicated by
values other than 1.00 along the correlation matrix diagonal (Cudeck,
1989). Models with such reconstruction errors were also excluded.

We propose that the best model is the one that explains the most
variability within the dataset and introduce a new metric for ranking
the non-excluded models: Psi t-scores. Each ROI of a given model is
accompanied by a variable Psi that describes how much of that ROI's
variance is explained. In other words, the Psi matrix is the variance–
covariance matrix of the error terms (i.e. the residuals) of the
structural equation linear model. We assume this matrix is diagonal,
i.e., the covariance terms are zero, so the only remaining terms for our
modeling are the variance of the residuals for each ROI. A highly
significant Psi score represents a similar lack of fit to the model as the
significance that would be assigned to standardized residuals in a
linear regression analysis. So as Psi becomes increasingly significant,
the model explains less of the corresponding ROI's variance. We
calculated the maximum Psi t-score per model, and then ranked
models from least to most significant Psi t-score. The Psi score
rankings typically showed a bimodal distributionwith a gap of several
points between the top 4–8 models and remaining models.

The top models with the lowest maximum Psi t-score (i.e., the
smallest amount of unexplained variance) were subsequently ranked
by the following criteria, in order of importance. First, we ranked the
models by the number of ROIs in the model (described by saturated
AIC). The justification is that, when choosing between twomodels that
capture equal amounts of variance, the model that incorporates more
ROIs allows for richer interpretations of network interactions.We next
ranked the models by lowest to highest standardized root mean
square residual (stRMR). Finally, we ranked models by highest to
lowest adjusted and parsimonious goodness of fit (AGFI and PGFI,
respectively).

Jackknife and Borda counts

The potential influence of subject outliers upon the respective
group models was assessed using a combination of jackknife tests and
Borda counts (Dym et al., 2002; Zwicker, 1991). We generated every

possible subset of the group data with exclusion of 1–5 subjects. For
example, our sample of 46 patients was resampled as 46 subsets with
exclusion of 1 subject, 46*45/2=1035 subsets with exclusion of 2
subjects, etc. For each subsample, we ranked how well each of the top
5 models fit that subsample using the same ranking criteria described
above. Models were ranked on a scale of 1–5, with 5 being the best-
fitting model. We then calculated the mean ranking of each model for
each number of excluded subjects.

Split-sample analysis

For additional assessment of replicability, the sample of 46
depressed patients was randomly split into 2 groups of 23 patients
each. The optimal model for each group (again determined with
exploratory SEM) was compared to the best model for the full sample.

Individual

We then assessed how well individual patients fit the group
model. We selected the probability of close fit (PCLOSE) from the
many fit indices available to assess model fit. PCLOSE is the prob-
ability that RMSEA is significantly greater than zero. The null hypoth-
esis for this comparison is that RMSEA does not differ from zero.
PCLOSE is the p-value for rejecting the null hypothesis that the model
fits the individual subject's data; a PCLOSE value less than 0.05
indicates that RMSEA is greater than zero, and therefore the model
does not fit.

Results

Group models

All of the viable patient models had Psi t-scores exceeding 68,
suggesting that all of the models retained large portions of
unexplained variability (Table 3). Without a clear Psi cut-off threshold,
the top 10 models were selected for subsequent sorting. Interestingly,
the model with the marginally better Psi score (111436) also had the
lowest stRMR of the surviving models with 5 ROIs (0.016 vs 0.023+).
The fit indices for this model meet common criteria for a good fit
(stRMRb0.05, PCLOSE≫0.05, low AIC, high AGFI and PGFI).

The full base model (Fig. 2, left) did not meet our criteria for a good
model. It failed to converge after 240 iterations, had squared multiple
correlation scores exceeding 1 in magnitude, and could not provide an
estimate of Psi or path t-scores. The best model for this prospectively
recruited group of depressed patients differs strikingly from the base
model (Fig. 2, right).

Model stability and reproducibility

Table 4 reflects consistency among the path coefficients for the 5
best patient models. Some path coefficients show remarkable
consistency. For example, the path from MACC24 to OFC11 ranges
in magnitude from −0.21 to −0.32, and the path from OFC11 to
MACC24 ranges 0.20 to 0.28. Some paths (such as OFC11 to HPC) have

Table 3
Fit indices for top 5 models (all subjects) and best models for each sample half

Model Subjects included Standard RMSEA PCLOSE Standard RMR AIC AGFI PGFI Min path t-score Max Psi t-score

111436 All 0.025 1.00 0.016 68.77 1.00 0.40 3.51 68.07
110924 All 0.034 1.00 0.023 109.50 0.99 0.47 3.88 69.49
37212 All 0.032 1.00 0.023 110.63 0.99 0.53 2.17 69.49
46412 All 0.034 1.00 0.023 112.52 0.99 0.47 3.44 69.49
107340 All 0.036 1.00 0.025 118.06 0.99 0.47 1.69 69.49
111436 Half1 0.008 1.00 0.010 35.67 1.00 0.40 2.03 47.69
103260 Half2 0.040 0.95 0.026 82.65 0.99 0.40 2.05 32.16
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varying weights whose magnitudes appear correlated with other
paths (in this case, the reciprocal path of HPC to OFC11). And other
paths have more spurious coefficients (MPF10–MACC24, SCC25–
OFC11) that retain consistent signs among the top models. Although
beyond the scope of the presented work, future endeavors could
characterize how path weight consistency influences overall model
fit — i.e. if the most consistent paths also explain the greatest amount
of sample variance.

To further assess model stability, we repeated our analysis method
using split samples of the full dataset. Path coefficients for each of the
best split sample models are comparable to the path coefficients for
the best full sample model (Table 4). The two paths differing between
the split samples (OFC11 to SCC25 and HPC to SCC25) are of negligible
magnitude (respectively 0.10 and −0.07).

The rankingwith Borda counts shows the bestmodel to be resilient
against the influence of subject outliers (Table 5). The best model
consistently retained the greatest mean ranking (as summarized with
Borda counts) with removal of 1, 2, 3, or 4 patients. Removal of more
than four subjects becomes computationally intractable. However, the
Borda counts show a distinct trend for the topmodel to win compared
to rival models.

Individual

The ideal application of this method is to characterize how well
individual subjects fit the group model. Using PCLOSE as the fit
criteria, 85% (39/46) of patients fit the optimal group model. This high
percentage of fit further reinforces that the group model is applicable
to individual subjects.

The path coefficients distributions for the 46 individual subjectsfit to
the optimal groupmodel are perhapsmore informative, as they describe
the relationships between these regions on an individual level.
Histograms for subjects' path coefficients (constrained from −1 to 1)

are plotted for each of the 9 paths in Fig. 3. For N= 46, the Lilliefors
composite goodness of fit test is insufficiently powerful to determine if
the distributions are non-Gaussian; as such, we relied upon visual
inspection to qualitatively infer Gaussianity. (Note that qualitative
assessments such as visual inspection are prone to experimenter bias;
however, the small sample size offers no alternative.) The path
coefficient histograms that best approximate a Gaussian distribution
(MACC24–OFC11, OFC11–MPF10) are also the most stable paths for the
top 5 group models and the best split-half models. Likewise, the paths
that least resemble a Gaussian distribution (MACC24–MPF10 and
MPF10–MACC24) have the most variable path coefficients.

Discussion

We have shown the group model to be highly reproducible for
group subsamples and applicable to the majority of individuals in our
sample. While this group model appears to characterize this group of
depressed patientsmost generally, it may not yet be optimal to explain
the deviations in neural connectivity patterns underlying potential
depression subtypes. Two converging lines of evidence suggest that
our group analysis could benefit from additional refinement. First, the
starting 7-node base model may be suboptimal. Anatomic and func-
tional neuroimaging studies have implicated the posterior cingulate's
and amygdala's involvementwith this resting state emotional network
(Anand et al., 2005; Johansen-Berg et al., 2008) — two regions not
included in the Seminowicz model due to power issues. Independent
diffusion tensor imaging (DTI) studies show another anatomic
connection, inferred from the white matter tract between subgenual
cingulate and medial prefrontal cortex (Fonteijn et al., 2008), not
included in the base model. Inclusion of these additional nodes and
paths would likely improve the validity of the base model.

Second, the patient sample contains amixof therapy responders and
nonresponders towhose status the authors are blinduntil completion of

Fig. 2. Comparison of the base causal model (left) and best model for 46 depressed patients. Depressed patients lack the reciprocal interactions between subgenual and midanterior
cingulate. Additionally, patients lack the involvement of the dorsolateral prefrontal cortex. Dashed lines indicate negative path coefficients. SCC25: subgenual cingulate. MACC24:
midanterior cingulate. HPC: hippocampus. DLPF9: dorsolateral prefrontal cortex. MPF10, medial prefrontal cortex. OFC11: orbitofrontal cortex.

Table 4
Path coefficients for top 5 models (using all patients) and top models (using half of patients)

Model Subjects
included

MACC24 to
SCC25

MACC24 to
OFC11

MACC24 to
MPF10

SCC25 to
MACC24

SCC25 to
OFC11

MPF10 to
MACC24

OFC11 to
SCC25

OFC11 to
MPF10

OFC11 to
HPC

HPC to
SCC25

HPC to
OFC10

111436 ALL – −0.32 −0.67 −0.15 0.33 0.76 – 0.27 0.27 −0.06 −0.22
110924 ALL – −0.22 – −0.07 0.36 0.04 – 0.20 0.43 −0.11 −0.35
37212 ALL – −0.23 – – 0.06 0.04 0.28 0.20 0.39 – −0.35
46412 ALL –0.06 −0.21 – – 0.36 0.04 – 0.20 0.39 −0.10 −0.32
107340 ALL – −0.30 −0.69 −0.15 0.31 0.79 – 0.28 0.03 0.02 –

103620 Half1 – −0.37 −0.74 −0.24 0.28 0.86 0.10 0.31 0.34 – −0.34
111436 Half2 – −0.29 −0.75 −0.06 0.30 0.83 – 0.28 0.20 −0.07 −0.12
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the ongoing study. A larger dataset (currently being collected) will be
necessary to fully differentiate between these subpopulations. The large
amount of variance not captured by our “optimal” model and the
presence of path weights with negligible magnitude (i.e. −0.06 for
hippocampus to subgenual cingulate) further suggests that a better
modelmay exist. Nonetheless, we have presented a viable technique for
identifying such an optimal model given a refined starting model that
could conceivably characterize depression subtypes with implications
for treatment response prediction based on individual baseline fMRI
measures of activity or connectivity.

The most notable difference between the base model and best
patient model is the lack of dorsolateral prefrontal involvement. One
potential behavioral interpretation of this model is that DLPFC
involvement reflects modulation of the core emotional network, and
its absence in depressed patients indicates an inability to self-regulate
one's mood state. However, several pragmatic considerations over-
shadow this speculative interpretation. ROI selection for the DLPFC
was themost problematic of ROIs in this study, given the region's large
size and functionally diverse subregions (see below). Diffusion
tractography or other structural techniques would be necessary to
more accurately select the optimal DLPFC ROI. Such approaches would
also indicate if intermediate regions, such as the dorsal raphe or
dorsomedial thalamus, should be included within this model.
Furthermore, the small sample size severely curtails the implications
that could be drawn between DLPFC activity and clinical variables.

Future work with a better refined model and larger sample size will
address the interpretation of regional activity and symptom.

Additionally, the reciprocal feedback of midanterior cingulate to
subgenual cingulate is missing. Additional reciprocity is seen between
midanterior cingulate and medial prefrontal, perhaps to stabilize the
system in the absence of subgenual to midanterior cingulate
reciprocity. While the two regions share a direct anatomic connection,
we stress that anatomic connectivity implies neither functional nor
effective connectivity. For example, Broca's and Wernicke's areas are
strongly correlated during both overt reading but not during tongue
movement tasks (He et al., 2003), despite their connection through
the arcuate fasciculus. Following the rules ofWright (1934), our model
suggests that subgenual cingulate can directly influence midanterior
cingulate, but midanterior cingulate does not directly influence
subgenual cingulate. While midanterior can affect subgenual cingu-
late through an indirect path (midanterior to orbitofrontal to hippo-
campus to subgenual), the composite path loading for this influence
(−0.32⁎− .22⁎− .06=−0.004) is negligible.

This “one-way” effective connectivity is surprising, especially given
the reciprocating effective connectivity influences between subgenual
and midanterior cingulate shown in the original Seminowicz model.
An important caveat is that the original model, while valid, is not
necessarily the most optimal model, whereas our exploratory SEM
approach specifically searches all possible models to find the model
with the best goodness of fit indices and explaining the most variance.
We are hesitant to make inferences about depression from this model,
as the starting model can be improved with inclusion of subcortical
regions with anatomic connections to both subgenual and midante-
rior cingulate, namely caudate and ventral striatum. We believe the
inclusion of these regions will further elucidate the complex
functional interactions along the cingulate.

It is not surprising that the optimal model does not incorporate
thalamus. The thalamic ROI is modeled as an exogenous variable with
only 1 path through which to explain its variance. Consequently,
models incorporating the thalamic ROI had considerably greater Psi
t-scores than models not incorporating thalamus. Since these models

Table 5
Borda counts for ranking of top 5 models with removal of 1–5 depressed subjects

Subjects
removed

Number of
combinations

Mean ranking by model

111436 110924 37212 46412 107340

1 46 5.00 3.98 2.48 2.46 1.09
2 1035 5.00 3.93 2.22 2.57 1.28
3 15,180 5.00 3.89 2.08 2.58 1.45
4 163,185 5.00 3.69 2.20 2.70 1.41
5 1,370,754 Becomes computationally intractable

Fig. 3. Histograms for path coefficients generated by fitting group model to individual subjects. The red line indicates group path coefficient value. Most path coefficients assume a
Gaussian distribution centered about the group value. X-axis is path coefficient value (excluding values with absolute magnitude exceeding 1), and y-axis is the number of subjects
with coefficients of this value.
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could not adequately explain thalamic variance, they were excluded
by the sorting criteria. As with DLPFC, the thalamic ROI may require
further refinement as other core members of the model are identified.

Our usage of Psi represents another criterion by which to gauge
model fit. The significance of the Psi score represents a similar lack of
fit to the model as the significance that would be assigned to
standardized residuals in a linear regression analysis. One purpose of
the analysis of residuals in linear regression is to identify observations
that may be overly influencing the results of the regression. However,
the size of the residuals can also be indicators of overall lack of fit with
a measure such as R2=1− (SSres/SStotal), which is small when there is
a large amount of variance which is not accounted for by the model
(i.e., the sum of all residual terms SSres, is large). In our multivariate
setting, the maximum significance value of all measures (ROIs) gives
us an indication of the maximum lack of fit or the largest amount of
unexplained variance due to one node for that particular model. Thus,
our use of the Psi significance t-scores allows us to identify models for
which the residuals are large, i.e. there is a large amount of
unexplained variance. Given a subsequent choice between models
with the same number of parameters and equivocal goodness of fit
indices, the model with the smaller amount of unexplained variance
would be preferred regardless of the particular reason for the lack of
fit (outlying observations, misspecification of the model). We feel that
this is a reasonable and statistically sound criterion to use.

We chose to define ROIs as 6 mm radius spheres placed upon the
group's mean standardized anatomic MRI. Using static, spherical ROIs
may be less optimal than defining ROIs for each individual, given
anatomic variability across subjects and issues with linear transfor-
mations of anatomic scans to standardized space (Crivello et al., 2002).
But defining ROIs for each individual is a double-edged sword; while
potentially increasing ecological validity, misplacement of a subject's
ROI(s) introduces an additional source of error. In the interest of
consistency, we chose to use ROIs defined from group mean anatomy,
then use the jackknife “leave N out” approach to assess deviations in
individual fit from the group model. If anatomic variability causes an
ROI to be poorly placed for a given subject, then excluding that subject
with the jackknife approach would show the group model to be
inferior to its rival models. Since the group model consistently wins
against its rivals with the exclusion of 1–4 subjects, we can be
confident that the group-defined ROIs are sufficient for all subjects.

In the absence of a functional localizer task, we used a group-level
correlational analysis with a posterior cingulate (PCC) seed to guide
ROI placement. PCC was selected because some of the regions of
interest (medial prefrontal cortex and subgenual cingulate) have been
shown to be correlated with PCC during rest (Greicius et al., 2003).
DLPF9 was the most challenging ROI to place due to the broad area
covered by this anatomic region. In retrospect, a seed map generated
from one of the ROIs in our model may have been more suitable.
However, t-test analyses show the mean group correlation of DLPF9 to
significantly differ from zero (all pb0.0001) for SCC25 (r=–0.16), HPC
(r=–0.18), MACC24 (r=0.28), and OFC11 (r=–0.23). These significant
correlations suggest that placement of the DLPF9 ROI, while arguably
serendipitous, is nonetheless valid.

Even if DLPF9 was excluded from the model due to suboptimal ROI
placement, this is not an indictment of our modeling approach. On the
contrary, we want a method that eliminates models that incorporate
erroneous ROIs. This is exactly what our usage of Psi scores does, and
represents an improvement over previous implementations (wherein
an ROI would be included regardless of how much of that variable's
variancewas explained by themodel). Everymodel only approximates
reality, and models can err in being over- or under-inclusive of
relevant variables. We have chosen to pursue a modeling approach
that aims at parsimony (minimize Type 1 error) while accepting
increased risk of missing relevant regions (Type 2 error).

Usage of the z-saga sequencewas necessary to retain signal from the
orbitofrontal cortex, an essential region in the Seminowicz model.

Z-saga has reduced anatomic coverage compared to standard echo
planar images, although whole brain coverage is possible with a TR of
3000ms. Themean variance of the orbitofrontal cortex ROI (4.91) across
subjects was comparable to variances of other ROIs (subgenual
cingulate, 4.19; thalamus, 4.09). Ventromedial prefrontal had the grea-
test variance of all ROIs (9.30) while hippocampus had the least (1.92).
Regardless, our usage of correlation (rather than covariance) matrices
ensures that all ROIs are expressed as standardized variance units, so
these variance differences across ROIs do not influence our results.

Our most novel application of SEM is the assessment of individual
subjects' fit to the group model. 85% of patients fit the group model,
showing that this model represents the patient sample well. The
histogram analysis illustrates that the path coefficients that are most
stable among the top group models are also the most Gaussian-
distributed across individuals. These paths may be indicative of group
commonality – i.e. how individuals of the group are similar.

Conversely, the path weights varying most across subjects may
convey nuanced information of responder/nonresponder subtype
membership that is lost in the group model. By example, the
MACC24-MPFC10 path (and its reciprocal) have flat, non-Gaussian dis-
tributions across individuals. These regions have previously been
associated with relapse vulnerability (Gemar et al., 2007) and with
changes inpre- andpost-treatment activation as a functionof treatment
strategy (Goldapple et al., 2004). Within this context, DLPFC's absence
from theoptimalmodelmaynot be surprising; Seminowicz et al. (2004)
showed path loadings to this region differ between cognitive–
behavioral therapy responders and medicine responders (via the
HPC–DLPF9 path) as well as between medicine responders and
nonresponders (via the SCC25–DLPF9 path).

Fig. 4 plots the non-Gaussian path coefficients (midanterior cingu-
late to medial prefrontal and its reciprocal path) by subject. For most
subjects, these path coefficients have comparable magnitude but
opposite sign. This relationship can be viewed as a negative feedback
loop; an increase in A leads to an increase in B, which in turn induces a
decrease in A. Subjects that did not fit the model (denoted by Xs) have
path coefficients that are skewed toward the right of the histogram (in
the opposite direction of the group path coefficients). Subjects with
path weights closer to the group model (i.e. with negative MACC24–
MPF10 and positive MPF10–MACC24 path weights) are more likely to
fit the group model than those subjects with path weights in the
opposite direction. However, numerous subjects with path weights
opposite of the group model still have a good statistical fit. The
reciprocal relationship suggests that the values of these path pairs are
not as important for model stability as the paths being commensurate

Fig. 4. Path coefficients for two paths without Gaussian distributions, by subject and
with outliers. For most subjects (38 of 46), the midanterior cingulate to medial pre-
frontal path has an opposite sign as its reciprocal medial prefrontal to midanterior
cingulate path. Subjects who do not fit the model (denoted by Xs) are skewed away
from the group model path weight (−0.67 and 0.76, toward the left of bar chart).
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and opposing. The incorporation of additional patient characteristics
(i.e. responder subtype) with a larger sample will help elucidate the
relative contribution of Gaussian-distributed path coefficients and
non-Gaussian, reciprocating path coefficients toward overall model fit.

Conclusions

Our extensions to exploratory SEM result in highly stable and
replicable group models for describing resting state connectivity. The
best group model is resilient to the effect of outliers and reductions in
sample size. Individuals' data fit the group model well, and the
distributions of individual-level path coefficients provide insight into
which paths offer the most critical contribution to the group model.
Our refinements to exploratory SEM are suitable for future exploration
and characterization of individual resting-state functional MRI data.
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Appendix A. Exclusion criteria

Patients were excluded if they had

• Current psychosis, dementia, eating or dissociative disorder.
• History of bipolar disorder (I and II) or schizophrenia
• Alcohol or drug dependence within 12 months or abuse within
3 months of baseline visit (excluding nicotine and caffeine) as
assessed by history and urine drug screen

• Need for concurrent neuroleptic or mood stabilizer therapy

• Presence of any acute or chronic medical disorder that would likely
affect or preclude completion of the trial.

• Medical contraindications which would preclude treatment with
escitalopram or duloxetine.

• Presence of practical issues that would likely prevent the patient
from completing the 12 weeks of the study (e.g. planned geogra-
phical relocation)

• Pregnant or breast-feeding women
• Women of child-bearing potential not using a medically approved
form of contraception and/or double barrier methods.

• Contraindications for MRI: pacemaker, aneurysm clips, neurosti-
mulators, cochlear implants, metal in eyes, steel worker, or other
implants.

• Contraindications for Dex-CRF test: uncontrolled hypertension;
significant abnormalities in EKG, anemia, known allergies against
CRF.

• Any (lifetime) prior exposure to Lexapro (escitalopram), Celexa
(citalopram) or Cymbalta (duloxetine)

• Any (lifetime) prior treatment with Cognitive Behavioral Therapy
(CBT), Interpersonal Therapy (IPT) or Behavioral Marital Therapy
for depressive symptoms for N4 sessions.

• Any (lifetime) adequate medication treatment (≥4 weeks at
minimal effective dose) for major depression or dysthymia.

• Treatment with an inadequate dose of an antidepressant for any
reason for N4 weeks during the current episode.

• Use of fluoxetine within 8 weeks of the screening visit.
• Use of any psychotropic medicationwithin 1 week of the screening
visit.

Appendix B. Exploratory SEM and fit indices

We include this appendix to offer additional insight into the
exploratory adaptation of SEM detailed elsewhere (Zhuang et al.,
2005) and justification for the fit criteria used to sort models. We
recommend Raykov and Marcoulides (2000 chapter 1) or Maruyama
(1998) for more comprehensive descriptions of SEM.

SEM is a confirmatory approach used to infer causality among
variables. Like all confirmatory approaches, the investigator is testing
how well a pre-defined model fits the observed data. Model fit is
assessed by comparing the variance–covariance matrix predicted from
the model to the variance–covariance matrix observed from the data.
The predicted covariancematrix can also be expressed in termsofmodel
parameters (i.e. path weights and variables' unexplained error). SEM
programs such as LISREL iteratively adjust the model parameters to
minimize the difference between the predicted and observed variance–
covariance matrices (in our work, using the Maximum Likelihood
Estimate). The iterative adjustment of parameters continues until the
improvement in model fit is negligible (convergence) or the process
exceeds a preset maximum number of iterations (non-convergence).
Then model fit criteria are calculated to describe differences in the
predicted and observed covariance matrices.

For our exploratory adaptation of SEM, we are using a brute-force
method to iteratively test every possible sub-model of the starting
base model. Then we evaluate which model is best by ranking the
models by their fit criteria. Below, we described the fit criteria and
provide justification for their use in ranking models.

Many of these indices are derived from the chi-squared (χ2) good-
ness of fit T=(N−1)Fmin, where N= # observations and Fmin=minimal
value for the fit function used. χ2 is rarely used, since the multipli-
cation by sample size inflates its significance value.

The Goodness of Fit Index (GFI) expresses the proportion of va-
riance that the proposed model explains. For MLE, GFI=1− [Tr((C−1

(S−C))2) /Tr((C−1S)2)] where C and S are the predicted and observed
covariance matrices and TR is the trace of the matrix.

Adjusted and Parsimonious GFI (AGFI, PGFI) are GFI respectively
corrected for number of parameters and sample size. For all three
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indices, the expression in brackets approaches 0 as the difference
between C and S diminishes, so that a perfect solution would have a
GFI of 1. A common threshold for GFI is to exceed 0.90. However, AGFI
and PGFI aremore conservative estimates.We chose to excludemodels
with PGFI≤0.10, as these models represent the very worst fitting
models. Higher thresholds were considered but ultimately rejected;
our strategy was to use exclusion criteria to reject the unquestionably
bad models, then rank the remaining non-excluded models.

Estimated path coefficients were accompanied by a standard devia-
tion and t-statistic. We excluded models with any path t-statistic|≤1.64
(corresponding to a two-tailed 90% confidence interval. We justify the
exclusion of these models with non-significant paths because the
identical model without these paths was also tested (since our brute
force approach tested every possible model).

The amount of each variables' variance explained by the model is
described as the matrix Psi. The Psi matrix is also accompanied by a
standard error and t-statistic. A significant t-statistic for a variable's
Psi score indicates that the model cannot explain a significant portion
of that variable's variance. To clarify our methods, we used the highest
Psi score of all variables as thatmodel's Psi score. For example, a model
with the Psi t-scores:

var1 t = 4:03 var2 t = 2:05 var3 t = 37:28 var6 t = 9:51

would be assigned a Psi t-score of 37.28
Note that variables not included in the model (var4, var5 and var7)

are not contributing to the overall solution due to LISREL's “SE”
command — an additional improvement over previous implementa-
tions of this method.

PCLOSE (or “P-value for Test of Close Fit”) is a p-value for the null
hypothesis that the root mean squared error of approximation
(RMSEA) is no greater than 0.05. RMSEA is ((χ2/((n−1)df))− (df /
((n−1)df)))⁎ .5, where n=sample size and df=degrees of freedom.
RMSEA b0.10 indicates an adequate fit and b0.05 indicates a
good fit. Likewise, a significant PCLOSE (i.e. pb0.05) indicates
that RMSEA N0.05 (and therefore, not a good model). We excluded
models with a significant PCLOSE (providing statistical evidence that
RMSEA N0.05) rather than RMSEAdirectly, since RMSEAwith a narrow
distribution could be close to but still significantly different from 0.05.

Standardized root mean residual (stRMR) is the mean difference
between predicted and observed variances, divided by the standard
error of the differences. StRMR b0.10 indicate an adequatefit and b0.05
indicate a good fit.

Akaike Information Criterion (AIC) is a χ2 adjusted for model
complexity. AIC is uninterpretable for a single model, but rather
compares models drawn from the same dataset (i.e. models including
the same ROIs). Lower AIC indicate better fit between model and data.
AIC is interpretable for Table 3 since all models include the same 5
ROIs, even though the paths between these ROIs differ.

Saturated AIC (satAIC) is n⁎ (n+1), where n is the number of ROIs
in the model. satAIC is used in our ranking to represent the number of
ROIs in the model.
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